speaker: Wenjuan Li, Northwestern Polytechnical University, Professor
time: 2024.4.26,3:00 PM
place: Yifu Building 1537
Abstract:
In this article, we study maximal functions related to hypersurfaces with vanishing Gaussian curvature in $\mathbb{R}^3$. Firstly, we characterize the $L^p\rightarrow L^q$ boundedness of local maximal operators along homogeneous hypersurfaces. Moreover, weighted $L^p$-estimates are obtained for the corresponding global operators. Secondly, for a class of hypersurfaces that lack a homogeneous structure and pass through the origin, we attempt to look for other geometric properties instead of height of hypersurfaces to characterize the optimal $L^p$-boundedness of the corresponding global maximal operators.